首页> 外文OA文献 >An improved genetic algorithm with a local optimization strategy and an extra mutation level for solving traveling salesman problem
【2h】

An improved genetic algorithm with a local optimization strategy and an extra mutation level for solving traveling salesman problem

机译:一种改进的遗传算法,具有局部优化策略和   解决旅行商问题的额外突变水平

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Traveling salesman problem (TSP) is proved to be NP-complete in mostcases. The genetic algorithm (GA) is one of the most useful algorithms forsolving this problem. In this paper a conventional GA is compared with animproved hybrid GA in solving TSP. The improved or hybrid GA consist ofconventional GA and two local optimization strategies. The first strategy isextracting all sequential groups including four cities of samples and changingthe two central cities with each other. The second local optimization strategyis similar to an extra mutation process. In this step with a low probability asample is selected. In this sample two random cities are defined and the pathbetween these cities is reversed. The computation results show that theproposed method also finds better paths than the conventional GA within anacceptable computation time.
机译:在大多数情况下,旅行商问题(TSP)被证明是NP完全的。遗传算法(GA)是解决此问题的最有用的算法之一。本文将传统遗传算法与改进的混合遗传算法在求解TSP方面进行了比较。改进或混合遗传算法由常规遗传算法和两种局部优化策略组成。第一个策略是提取包括四个样本城市在内的所有顺序组,并将两个中心城市彼此转换。第二种局部优化策略类似于额外的变异过程。在该步骤中,以低概率选择样本。在此样本中,定义了两个随机城市,并且这些城市之间的路径被颠倒了。计算结果表明,所提出的方法在可接受的计算时间内也能找到比常规遗传算法更好的路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号